

Gutter Flow Analysis

- · Gutter flow analysis to determine depth
 - Typical gutter is triangular in shape, cross-slope 2%-3%
 - Integrating Manning's equation across width of gutter section yields:

• Q = (Ku/n)
$$S_x^{1.67} S_L^{0.5} T^{2.67}$$
 (4-2)

- Where
 - -Ku = 0.56
 - n = Manning's coefficient
 - $-S_x$ = Cross-slope, ft/ft
 - $-S_L$ = Longitudinal slope, ft/ft
 - T = Top width, ft

Gutter Roughness

Type of Gutter or Pavement	Manning's n	
Concrete gutter, troweled finish	0.012	
Asphalt Pavement:		
Smooth texture	0.013	
Rough texture	0.016	
Concrete gutter-asphalt pavement:		
Smooth	0.013	
Rough	0.015	
Concrete pavement:		
Float finish	0.014	
Broom finish	0.016	

Gutter flow depth and velocity

- Example Find flow depth for a flow of 1.8 cfs, with $S_L = 1\%$, $S_x = 2\%$ and n = 0.016
- Rearranging equation 4-2,

T =
$$[(Qn)/(Ku S_x^{1.67} S_L^{0.5})]^{0.375}$$

- $T = [(1.8)*(0.016)/(0.56 (0.02)^{1.67} (0.01)^{0.5})]^{0.375}$
- T = 9.0 ft
- $d = T * S_x$ where d = depth in ft.
- d = 9.0 * 0.02 = 0.18 ft.
- · To find velocity,

$$V = (Kc/n) S_x^{0.67} S_L^{0.5} T^{0.67}$$
 (4-13)

 $\mathsf{V} = (1.11/0.016) \; (0.02)^{0.67} \; (0.01)^{0.5} \; (9.0)^{0.67}$

V = 2.20 ft/sec

Gutter depth and velocity - problem

- Class Problem Find flow depth and velocity for a flow of 2.6 cfs, with S_L = 5%, S_x = 2% and n = 0.016
- · Rearranging equation 4-2,

 $\mathsf{T} = [(\mathsf{Qn})/(\mathsf{Ku} \; \mathsf{S_x}^{1.67} \; \mathsf{S_L}^{0.5})]^{0.375}$

- $T = [()^*()^*()^{0.56}()^{1.67}()^{0.5}]^{0.375}$
- T = ft
- $d = T * S_x$ where d = depth in ft.
- d = __ * ___ = ___ ft.
- · To find velocity,

 $V = (Kc/n) S_v^{0.67} S_1^{0.5} T^{0.67}$

 $V = (1.11/1) (0.67 (0.67)^{0.67} (0.67)^{0.67}$

V = ___ ft/sec

Gutter depth and velocity - problem

- Class Problem Find flow depth and velocity for a flow of 2.6 cfs, with S_L = 5%, S_x = 2% and n = 0.016
- Rearranging equation 4-2,

 $T = [(Qn)/(Ku S_x^{1.67} S_1^{0.5})]^{0.375}$

- $T = [(2.6)*(0.016)/(0.56 (0.02)^{1.67} (0.05)^{0.5})]^{0.375}$
- T = 7.7 ft
- $d = T * S_x$ where d = depth in ft.
- d = 7.7 * 0.02 = 0.15 ft.
- · To find velocity,

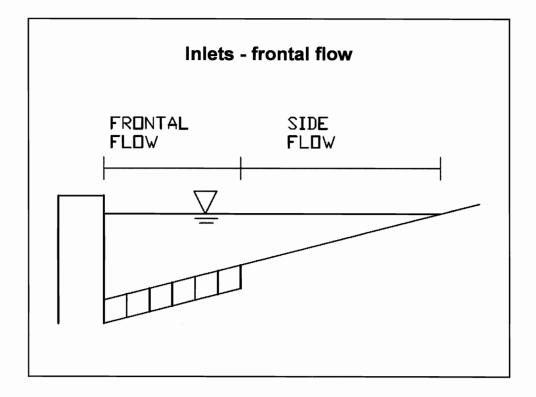
 $V = (Kc/n) S_x^{0.67} S_L^{0.5} T^{0.67}$

 $V = (1.11/0.016) (0.02)^{0.67} (0.05)^{0.5} (7.7)^{0.67}$

V = 4.42 ft/sec

Inlets - frontal flow

- On a slope, inlet capacity is determined by the amount of frontal flow and the amount of side flow
- The ratio of frontal flow to total gutter flow, Eo, for a uniform cross slope is expressed by equation 4-16:


Eo =
$$(Qw/Q) = 1 - (1 - (W/T))^{2.67}$$
 (4-16)
where:

 $Q = total gutter flow, ft^3/s$

 $Qw = flow in width W, ft^3/s$

W = width of depressed gutter or grate, ft

T = total spread of water, ft

Inlets - frontal and side flow

- For a flow of 1.8 cfs, with $S_L = 1\%$, $S_x = 2\%$ and n = 0.016, find the amount of frontal flow and the amount of side flow, if the grate is 2.5 feet wide and 2 feet long. From earlier solution, T = 9.0.
- Eo = 1 $(1 (W/T))^{2.67}$ (4-16)
- Eo = 1 $(1 (2.5/9))^{2.67}$
- Eo = 0.58
- Frontal flow = 0.58 * 1.8 cfs = 1.04 cfs
- Side flow = 1.8 cfs 1.04 cfs = 0.76 cfs

Inlet Problem - frontal and side flow

- Class Problem For a flow of 2.6 cfs, with $S_L = 5\%$, $S_x = 2\%$ and n = 0.016, find the amount of frontal flow and the amount of side flow, if the grate is 2.0 feet wide and 2.5 feet long. From earlier solution, T = 7.7.
- Eo = 1 $(1 (W/T))^{2.67}$ (4-16)
- Eo = 1 $(1 (_/_))^{2.67}$
- Eo = ___
- Frontal flow = ____ * ___ cfs = ___ cfs
- Side flow = ___ cfs ___ cfs = ___ cfs

Inlet Problem - frontal and side flow

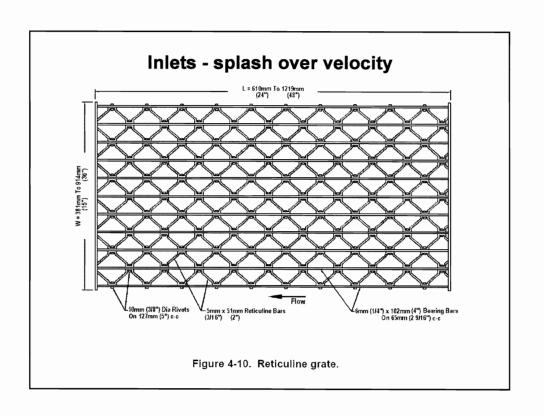
- Class Problem For a flow of 2.6 cfs, with $S_L = 5\%$, $S_x = 2\%$ and n = 0.016, find the amount of frontal flow and the amount of side flow, if the grate is 2.0 feet wide and 2.5 feet long. From earlier solution, T = 7.7.
- Eo = 1 $(1 (W/T))^{2.67}$ (4-16)
- Eo = 1 $(1 (2.0/7.7))^{2.67}$
- Eo = 0.55
- Frontal flow = 0.55 * 2.6 cfs = 1.43 cfs
- Side flow = 2.6 cfs 1.43 cfs = 1.17 cfs

Inlet interception - frontal flow

- For a flow of 1.8 cfs, with S_L = 1%, S_x = 2% and n = 0.016, if the grate is 2.5 feet wide and 2 feet long (with a splash-over velocity of 4.1 ft/sec from HEC-22, reticuline grate), find the amount of flow intercepted. From earlier solution, T = 9.0, Eo = 0.58, frontal flow = 1.04 cfs, side flow = 0.76 cfs, gutter velocity = 2.20 ft/sec.
- To determine ratio of frontal flow intercepted (Rf)

Rf = 1 - Ku (V - Vo)

(4-18)


where:

Ku = 0.09

V = velocity of flow in the gutter, ft/s

Vo = gutter velocity where splash-over first occurs, ft/s (Note: Rf cannot exceed 1.0)

Rf = 1.0 because Vo > V

Inlet interception - side flow

- If Rf = 1.0, 100% of frontal flow is intercepted, so frontal flow intercepted = 1.04 cfs
- · To determine side flow interception
- Rs = 1 / { 1 + [(Ks * $V^{1.8}$)/(S_x * $L^{2.3}$)]} (4-19) where:

Ks = 0.15

- Rs = $1/\{1 + [(0.15 * (2.2)^{1.8})/(0.02 * (2)^{2.3})]\}$
- Rs = 0.14, so 14% of side flow is intercepted
- Side flow intercepted = 0.14 * 0.76 cfs = 0.11 cfs
- Total flow intercepted by this inlet = 1.04 + 0.11 = 1.15 cfs, or about 64% of the total flow of 1.8 cfs
- Inlets should generally intercept about 80% of total flow

Inlet problem - frontal flow interception

- Class Problem For a flow of 2.6 cfs, with $S_L = 5\%$, $S_x = 2\%$ and n = 0.016, if the grate is 2.0 feet wide and 2.5 feet long (with a splash-over velocity of 4.7 ft/sec from HEC-22, reticuline grate), find the amount of flow intercepted. From earlier solution, T = 7.7, Eo = 0.55, frontal flow = 1.43 cfs, side flow = 1.17 cfs, gutter velocity = 4.42 ft/sec.
- To determine ratio of frontal flow intercepted (Rf)

Frontal Flow intercepted = ___ * ___ = ___ cfs

Inlet problem - side flow interception

- · To determine side flow interception
- Rs = 1 / { 1 + [(Ks * $V^{1.8}$)/(S_x * $L^{2.3}$)]} where:

$$Ks = 0.15$$

- Rs = $1/\{1 + [(0.15 * (_)^{1.8})/(_ * (_)^{2.3})]\}$
- Rs = 0. , so % of side flow is intercepted
- Side flow intercepted = ___ * ___ cfs = ___ cfs
- Total flow intercepted by this inlet = ___ + __ = __ cfs, or about ___% of the total flow of 2.6 cfs

Inlet problem - interception

- To determine ratio of frontal flow intercepted (Rf)
- Rf = 1 Ku (V Vo)
 Rf = 1 0.09 (4.42 4.7)
 Rf = 1.00
- Frontal Flow intercepted = 1.00 * 1.43 = 1.43 cfs
- · To determine side flow interception
- Rs = 1 / { 1 + [(Ks * $V^{1.8}$)/(S_x * $L^{2.3}$)]}
- Rs = 1 / { 1 + $[(0.15 * (4.42)^{1.8})/(0.02 * (2.5)^{2.3})]$ }
- Rs = 0.07, so 7% of side flow is intercepted
- Side flow intercepted = 0.07 * 1.17 cfs = 0.08 cfs
- Total flow intercepted by this inlet = 1.43 + 0.08 = 1.51 cfs, or about 58% of the total flow of 2.6 cfs

Curb Opening Inlet

· Length of curb-opening for total interception:

$$L_T = Kc Q^{0.42} S_1^{0.3} [1/(n S_x)]^{0.6}$$

$$Kc = 0.6$$

 L_{T} = curb opening length

Q = gutter flow, cfs

S₁ = longitudinal slope

 S_x = transverse slope

· Efficiency for shorter lengths:

$$E = 1 - [1 - (L/L_T)]^{1.8}$$

(4-23)

(4-22)

• Efficiency increases by 40-50% if curb opening is depressed 1 inch (see equation 4-24)

Curb Opening Inlet

• Find required length of curb opening for a flow of 2.6 cfs, with $S_L = 5\%$, $S_x = 2\%$ and n = 0.016

$$L_T = 0.6 (2.6)^{0.42} (0.05)^{0.3} [1/(0.016 * 0.02)]^{0.6}$$

$$L_{T} = 46 \text{ ft}$$

 Find required length of curb opening for a flow of 2.6 cfs, with S_L = 2%, S_x = 2% and n = 0.016

$$L_T = 0.6 (2.6)^{0.42} (0.02)^{0.3} [1/(0.016 * 0.02)]^{0.6}$$

$$L_{T} = 35 \text{ ft}$$

 Find the flow intercepted by 20 feet of curb opening, if total flow is 2.6 cfs, with S_L = 5%, S_x = 2% and n = 0.016

$$E = 1 - [1 - (20/46)]^{1.8}$$

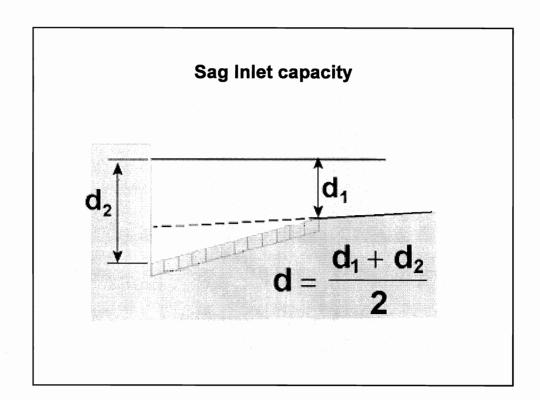
$$Q = 0.64 * 2.6 = 1.66 cfs$$

Sag Inlet capacity

- In a sag, inlet capacity is determined by either orifice flow or weir flow
- · The capacity of grate inlets operating as weirs is:

 $Qi = Cw P d^{1.5}$

(4-26)


where:

P = perimeter of the grate in ft disregarding the side against the curb

Cw = 3.0 in English units

d = average depth across the grate;

0.5 (d1 + d2), ft

Sag Inlet Capacity - weir flow

- Example inlet grate is 2.5 feet wide, 2 feet long, S_x = 0.02 and the grate has a clear opening area of 4 square feet. What is the capacity in weir flow at a depth of flow of 0.25 feet?
- d2 = 0.25 ft
- $d1 = d2 W * S_x = 0.25 (2.5 * 0.02) = 0.20$
- d = 0.5 * (d1 + d2) = 0.5 * (0.25 + 0.20) = 0.225
- Qi = Σ Cw P d^{1.5}
- Qi = $\{3.0 * (2.5 + 2.5) * (0.225)^{1.5}\} + \{3.0 * (2) * (0.2)^{1.5}\}$
- Qi = 1.60 + 0.54
- Qi = 2.14 cfs

Sag Inlet Capacity - orifice flow

- The capacity of grate inlets operating as orifices is:
- Qi = Co Ag $(2 g d)^{0.5}$ (4-27)

where:

Co = orifice coefficient = 0.67

Ag = clear opening area of the grate, ft²

 $g = 32.16 \text{ ft/s}^2$

- Example inlet grate is 2.5 feet wide, 2 feet long, S_x = 0.02 and the grate has a clear opening area of 4 square feet. What is the capacity in orifice flow at a depth of flow of 0.25 feet?
- Qi = 0.67 * 4 * (2 * 32.2 * 0.225) 0.5
- Qi = 10.2 cfs > 2.14 cfs, so inlet operates as a weir

Sag Inlet Problem

- Class problem inlet grate is 1.5 feet wide, 2 feet long, S_x = 0.02 and the grate has a clear opening area of 2 square feet. What is the capacity at a depth of flow of 0.3 feet?
- · Weir flow capacity:

· Orifice flow capacity:

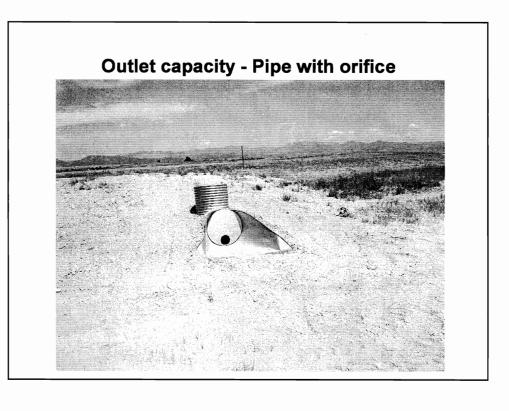
Sag Inlet Problem

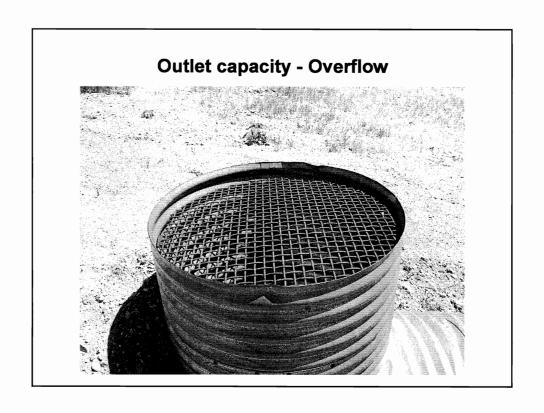
- Class problem inlet grate is 1.5 feet wide, 2 feet long, S_x = 0.02 and the grate has a clear opening area of 2 square feet. What is the capacity at a depth of flow of 0.3 feet?
- · Weir flow capacity:

d2 = 0.3 ft
d1 = d2 - W *
$$S_x$$
 = 0.3 - (1.5 * 0.02) = 0.27
d = 0.5 * (d1 + d2) = 0.5 * (0.30 + 0.27) = 0.285
Qi = Cw P d^{1.5}
Qi = {3.0 * (1.5 + 1.5) * (0.285)^{1.5}} + {3.0 * (2.0) * (0.27)^{1.5}}
Qi = 1.37 + 0.84 cfs
Qi = 2.22 cfs

Sag Inlet Problem

· Orifice flow capacity:


 $Qi = Co Ag (2 g d)^{0.5}$


 $Qi = 0.67 * 2 * (2 * 32.2 * 0.285)^{0.5} = 5.74 cfs$

 Weir flow capacity = 2.22 cfs, so inlet operates in weir flow

Outlet capacity analysis

- Detention pond outlets ALMOST NEVER have a constant outflow rate.
- Outlets are commonly some type of culvert or perforated pipe, often with a trash rack
- For culverts, use hydraulic design software (carefully) should solve inlet control and outlet control
- For perforated pipe, analyze each perforation (or set of perforations) separately
- In either case, develop a stage-discharge relationship

Outlet capacity - Orifice and overflow

- Orifice size = 10 inches
- Overflow pipe size = 36 inches
- Invert of orifice to overflow pipe = 5 feet
- For orifice capacity: Qo = Co Ag (2 g h)^{0.5} where:

Co = orifice coefficient = 0.60

Ag = opening area of the orifice, ft²

 $= \pi r^2 = \pi * (5/12)^2 = 0.545 \text{ ft}^2$

 $g = 32.16 \text{ ft/s}^2$

h = depth from water surface to center of orifice

• For weir capacity: $Qw = Cw P d^{1.5}$ where:

Cw = weir coefficient = 3.0

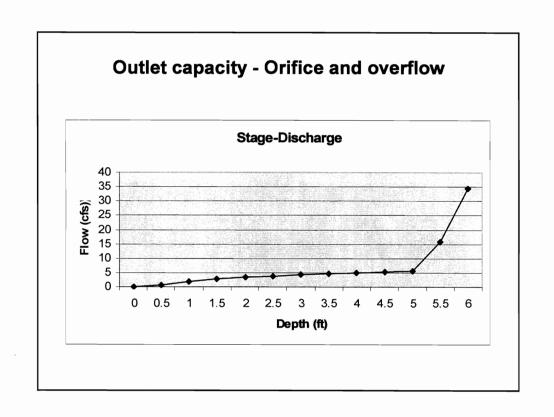
P = perimeter of weir, ft

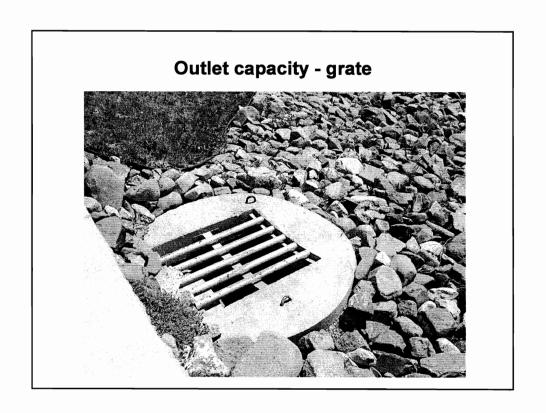
 $= \pi d = \pi * (36/12) = 9.42 \text{ ft}$

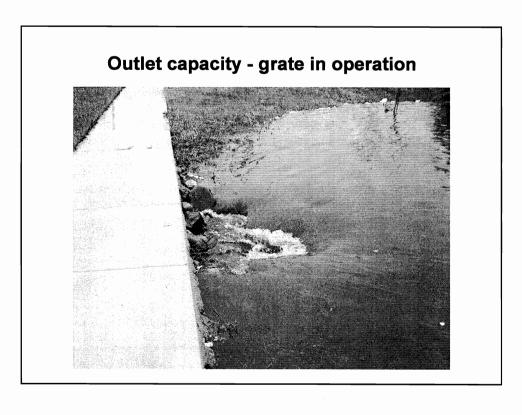
d = depth from water surface to top of weir

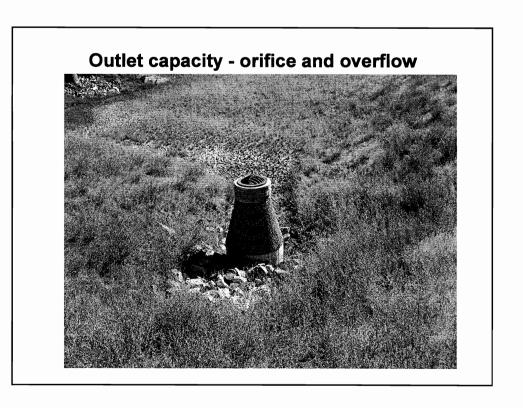
Outlet capacity - Orifice and overflow

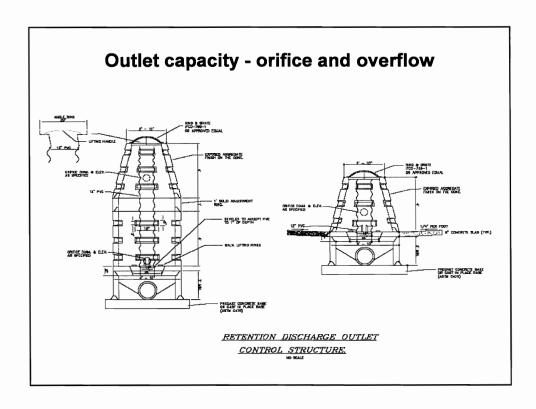
Qo = Co Ao (2 g h)^{0.5}
 Co = 0.60; Ao = 0.545 ft²; g = 32.16 ft/s²


Depth above	Depth above	Q
Bottom	orifice center (h)	(cfs)
0.0 ft	0.0 ft	0.0
1.0 ft	0.58 ft	2.0
2.0 ft	1.58 ft	3.3
3.0 ft	2.58 ft	4.2
4.0 ft	3.58 ft	5.0
5.0 ft	4.58 ft	5.6
5.5 ft	5.08 ft	5.9
6.0 ft	5.58 ft	6.2

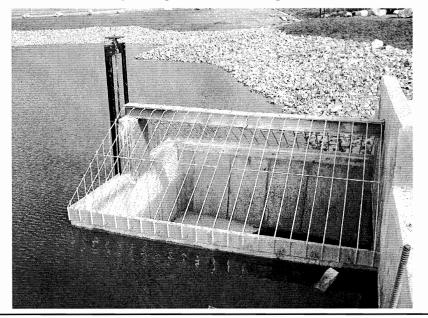

Outlet capacity - Orifice and overflow


• Qw = Cw P d^{1.5} Cw = 3.0; P = 9.42 ft

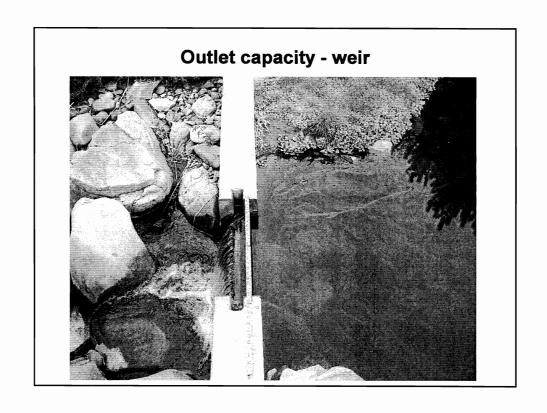

Depth above Depth above Q Bottom weir (d) (cfs) 0.0 ft 0.0 ft 0.0 5.0 ft 0.0 ft 0.0 5.5 ft 0.5 ft 10.0 6.0 ft 1.0 ft 28.3

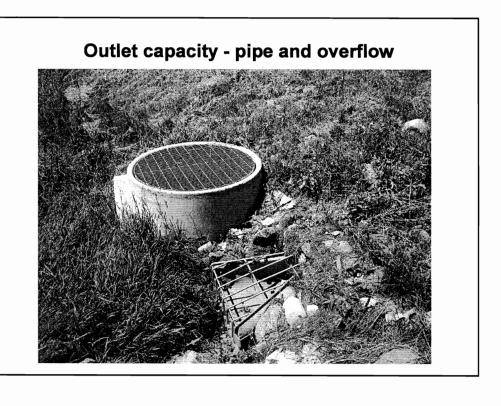

Bottom	flow (cfs)	flow (ofc)	(1. (.(.)
		flow (cfs)	flow (cfs)
).0 ft	0.0	0.0	0.0
I.0 ft	2.0	0.0	2.0
2.0 ft	3.3	0.0	3.3
3.0 ft	4.2	0.0	4.2
1.0 ft	5.0	0.0	5.0
5.0 ft	5.6	0.0	5.6
5.5 ft	5.9	10.0	15.9
3.0 ft	6.2	28.3	34.5

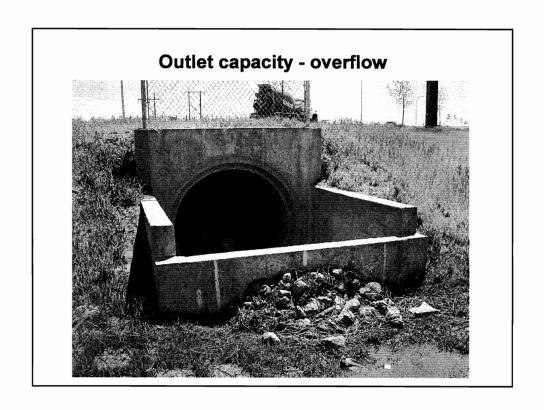
Outlet capacity - Multiple perforations

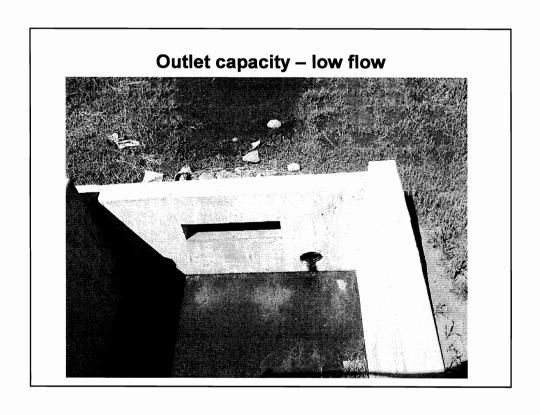

- For outlet with a series of perforations/orifices solve for flow through each perforation/orifice using orifice equation (same as for an inlet) for varying depths, then sum each row of perforations
- For Mansion Heights Pond, two orifices: #1, elevation 3690, 7" diameter (Ao = 0.27); #2, elevation 3695, 5" diameter (Ao = 0.14); Co = 0.60

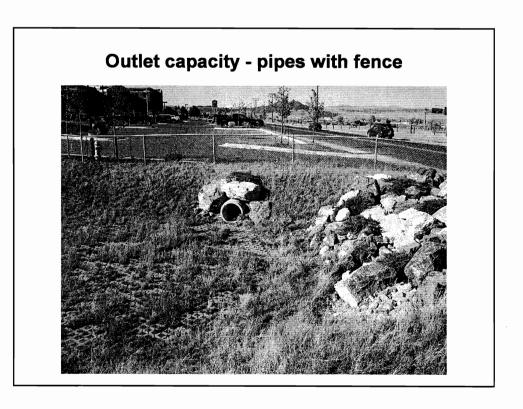
	, , ,			
Water	Head on	Orifice#1	Orifice#2	Total
Elevation	Orifice	flow	flow	flow
3690	0.0'/0.0'	0.0	0.0	0.0
3691	0.7'/0.0'	1.1	0.0	1,1
3696	5.7'/0.8'	3.1	0.6	3.7
3697	6.7'/1.8'	3.3	0.9	4.2


Outlet capacity - Multiple perforations


Elevation	Low Orifice	High Orifice	Total Flow	
	Flow, cfs Flow, cfs		cfs	
3690	0	0	0	
3691	1.1	0	1.1	
3692	1.7	0	1.7	
3693	3 2.1 0		2.1	
3694	2.5	0	2.5	
3695	2.8	0	2.8	
3696	3.1	0.6	3.7	
3697	3.3	0.9	4.2	
3698	3.6	1.1	4.7	
3699	699 3.8 1.3		5.1	







Outlet capacity - inlet control equations

From FHWA HDS-5:

UNSUBMERGED:

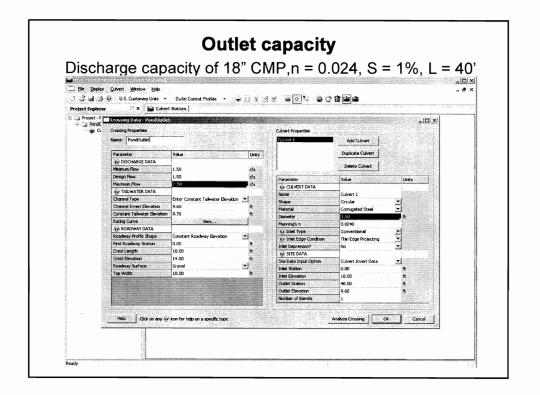
Form (2) $Hw_i/D = K^*[(Ku^*Q)/(A^*D^{0.5})]^M$

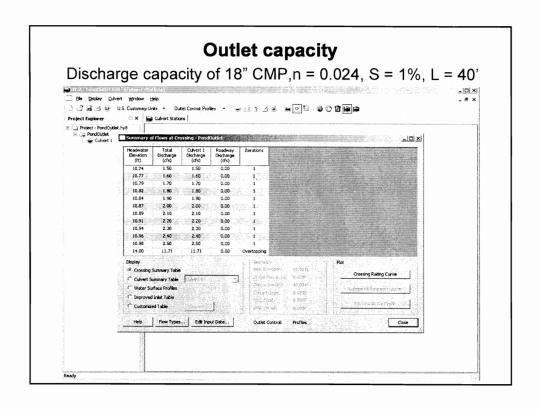
Hw_i = Headwater depth above inlet invert, ft

D = Interior height of culvert barrel, ft

Q = Discharge, cfs

A = Full cross-sectional area of barrel, ft²

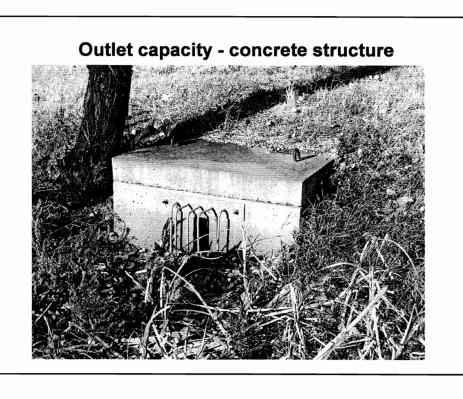

S = Culvert barrel slope, ft/ft

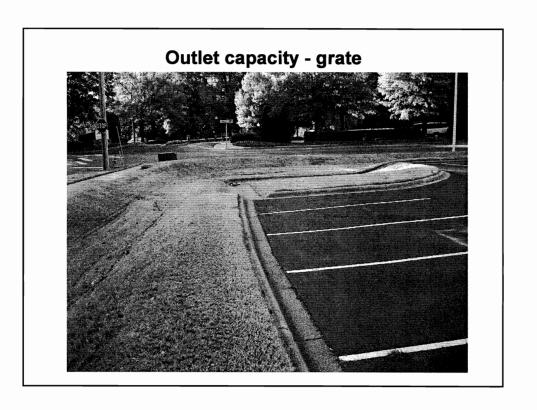

K, M, c, Y = Constants from Table 9

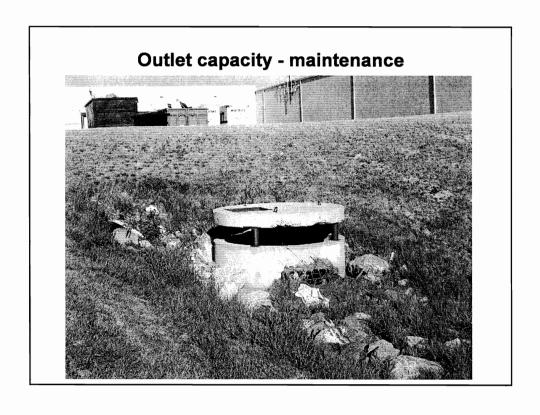
Ku = 1.0 (English units)

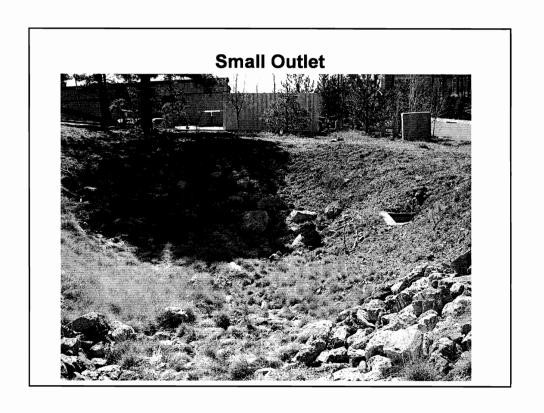
SUBMERGED:

 $Hw_i/D = c *[(Ku*Q)/(A*D^{0.5})]^2 + Y - 0.5S^2$






Outlet capacity


 Discharge capacity of 18" CMP, from HY-8 Program (with n = 0.024, S = 1%, L = 40'):

Depth	Flow	Depth	Flow	Depth	Flow	Depth	Flow
0.1	0.1	1.1	3.0	2.1	7.6	3.1	9.9
0.2	0.1	1.2	3.5	2.2	7.8	3.2	10.1
0.3	0.2	1.3	4.1	2.3	8.1	3.3	10.3
0.4	0.5	1.4	4.6	2.4	8.3	3.4	10.5
0.5	0.7	1.5	5.1	2.5	8.5	3.5	10.7
0.6	1.0	1.6	5.6	2.6	8.8	3.6	10.9
0.7	1.3	1.7	6.1	2.7	9.0	3.7	11.1
0.8	1.7	1.8	6.6	2.8	9.3	3.8	11.3
0.9	2.1	1.9	7.0	2.9	9.5	3.9	11.5
1.0	2.6	2.0	7.3	3.0	9.7	4.0	11.7

